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Classification of drugs in absorption classes using the classification
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Abstract

Classification and regression trees (CART) were evaluated for their potential use in a quantitative structure-activity relationship (QSAR)
context. Models were build using the published absorption values for 141 drug-like molecules as response variable and over 1400 molecular
descriptors as potential explanatory variables. Both the role of two- and three-dimensional descriptors and their relative importance were
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For the used dataset, CART models showed high descriptive and predictive abilities. The predictive abilities were evaluated

oth cross-validation and an external test set. Application of the variable ranking method to the models showed high importan
-octanol/water partition coefficient (logP) and polar surface area (PSA). This shows that CART is capable of selecting the most im
escriptors, as known from the literature, for the absorption process in the intestinal tract.
2005 Elsevier B.V. All rights reserved.
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. Introduction

A major problem in drug discovery is that molecules posi-
ively screened for their interaction with target molecules fail
o become drugs because of non-proper absorption, distri-
ution, metabolisation, elimination and toxicity (ADMET)-
roperties. Therefore, different methods are being developed

o screen these molecules for their ADMET-properties in an
arly stage of the drug development. This work considers

he problem of screening for absorption properties in the
astro-intestinal tract. Different in vitro techniques, like
aco-2 membrane permeability, Parallel Artificial Mem-
rane Permeability Assay (PAMPA) and animal tissue based
ethods, have been discussed by several authors[1,2] but

hese techniques are not very valuable in the high-throughput

∗ Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2 477 47 35.
E-mail address:yvandh@vub.ac.be (Y.V. Heyden).

screening of diverse candidate drug molecules. Nex
these techniques based on artificial membranes, iso
gut-segments or cultivated intestinal cells, HPLC-meth
were developed, using either classical reversed-p
conditions[3], special stationary phases or special mo
phases[1,2,4,5]. A method with a special stationary pha
is immobilized artificial membrane (IAM)-chromatograp
[1,2], which uses a stationary phase containing fosfat
choline groups, to mimic the lipophilic environment of
celmembranes[4]. This method considers that a molec
with a relatively high retention on the IAM-column shou
have a good permeability through celmembranes. It sh
be noted that molecules with very high retention times
dissolve in the lipophylic environment of the celmembr
and show a low permeability. It has been reported
this technique can give a classification from low to h
absorption in a dataset of related molecules, but not in
diverse datasets[1]. This is because the IAM-techniq
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only considers passive diffusion and not carrier-mediated
or active transport through the celmembrane. Detroyer et al.
[5] reported the use of a special mobile phase, in example
a micellar liquid chromatography technique, which gives
a good correlation between the retention factors and the
n-octanol/water partition coefficient, logP. Since logP is
considered to be an estimate related to the partitioning over
bio-membranes[6–8], the MLC technique can possibly be
used to screen the absorption of molecules[9].

In drug development the application of in silico techniques
is of special interest because they can be used in the very
first stages. Different mathematical models were developed
in the past years. These models are called “quantitative
structure-activity relationships” (QSAR) and relate molec-
ular activities, like absorption, to the structural properties
of the molecule, described by molecular descriptors. An
example of such a relationship is the frequently used Lipinski
rule of five[6], which considers that poor absorption is more
likely when a molecule answers positive to two or more of
the following rules: more than five H-bond donors, more
than 10 H-bond acceptors, the molecular weight is higher
than 500 and the calculated logP is higher than 5. Another
example is the linear free energy relationship (LFER) of
Abraham et al.[10]. This relationship relates activities, like
solubility, partitioning between hydrophylic and lipophylic
phases, blood–brain distribution, cell permeability, and
h tors.
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Fig. 1. General structure of a CART-model,xi is the selected split variable
andai is the selected split value.

2. Theory

2.1. Classification and regression trees

CART is a non-parametric statistical method, which uses
a decision tree to solve classification and regression problems
using both categorical and continuous variables. The method
was developed by Breiman et al.[16] in order to build a de-
cision tree which describes one response variable (univariate
CART), e.g. absorption as a function of different explanatory
variables, e.g. molecular descriptors (Fig. 1). When the
dependent variable is categorical, CART produces a classifi-
cation tree, when it is continuous it will lead to a regression
tree.

A CART analysis generally consists of three steps. In a
first step an overgrown tree is build, which closely describes
the training set. This tree is called the maximal tree and is
grown using a binary split-procedure. In a next step the over-
grown tree, which shows overfitting, is pruned. During this
procedure a series of less complex trees is derived from the
maximal tree. In the final step, the tree with the optimal tree
size is selected using a cross-validation (CV) procedure[16].

2.1.1. Building the maximal tree
The maximal tree is build using a binary split procedure,
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uman intestinal absorption to five molecular descrip
he relationship can be written as:

P= c + eE + sS + aA + bB + vV

here SP is the response variable or molecular activity,E the
xcess molar refraction,S the solute polarity/polarisabilit
the solute H-bond acidity,B the solute H-bond basici

ndV is the Mc Gowan characteristic molar volume, wh
, e, a, b and v are regression coefficients[10]. In the
iterature many QSAR-models can be found using adva
egression techniques like multivariate linear regres
MLR), principal component regression (PCR), partial le
quares (PLS) and neural networks (NN)[11–15].

This paper wants to introduce a new approach in QS
here the models described above try to exactly pr

he activities (here absorption) of molecules, we aim
redicting absorption classes, ranging from low to high
orption. A relatively new technique in QSAR, classifica
nd regression trees (CART)[16], will be evaluated on it
bility to classify molecules in absorption classes and o
redictive power. All previously mentioned models req
ariable selection before modeling can be started. In CA
he variable selection is part of the methodology. This m
hat modelling can be started with an extended set of des
ors. The CART-methodology was already used success
n quantitative structure-retention relationships (QSRR
ut et al.[17]. The latter relationships relate the reten
f molecules on chromatographic systems to molec
escriptors[18].
hich starts at the tree-root. The tree-root consists o
bjects of the training set. At each level, a mother gr

s considered which is split in two exclusive daugh
roups. In the next step, every daughter group becom
other group. Every split is described by one value of
escriptor, chosen in such a way that all objects in a dau
roup have more similar response variable values. The

or continuous variables is defined by “xi <aj” where xi is
he selected explanatory variable andaj its split value.

To choose the most appropriate descriptor for a split an
plit value, CART uses an algorithm in which all descrip
nd all split values are considered. The split which give
est reduction in impurity between the mother group (tp) and

he daughter groups (tL andtR) is selected. Mathematica
his is expressed as:

i(s, tp) = ip(tp) − pLi(tL) − pRi(tR)
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wherei is the impurity,s the candidate split value, andpL
andpR are the fractions of the objects in the left and the right
daughter group, respectively.

For regression trees, the impurityi is usually defined as
the total sum of squares of the deviations of the individual
responses from the mean response of the group in which the
considered molecule is classified[16,17]:

i(t) =
n∑

n=1

(yn − ȳ(t))2

with i(t) the impurity of groupt, yn the value of the response
variable for objectxn andȳ(t) the mean of the response vari-
able in groupt.

This splitting procedure is repeated for each daughter
group until the maximal tree is grown. The maximal tree
is defined as the tree in which every end node (leaf) consists
of one object, or of a predefined number of objects, or of
homogeneous groups.

2.1.2. Tree-pruning
The maximal tree usually shows overfitting. As with other

modeling techniques it is necessary to find a compromise
between tree complexity and its predictive power[19].

During the pruning procedure a series of smaller subtrees
derived from the maximal tree is obtained by successively
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predictive error of the tree build with the other nine subsets.
This procedure is repeated ten times using each time another
subset as test set. The most accurate tree is the one with the
smallest mean CV error, defined as the root mean squared
error of cross validation (RMSCEV):

RMSECV=
√∑n

i=1(yi − ŷi)

n

with yi is the response value of objecti, ŷi the predicted
response value for objecti andn the total number of objects.
The Treeplus® module identifies the optimal tree as the least
complex one with an RMSECV within one standard error
of the most accurate tree. The idea here is to choose a less
complex tree with a predictive error comparable to that of the
most accurate one[16].

2.1.4. Variable ranking
In general it can be stated that tree-structured models are

easier to understand than more classical models like PLS
or PCR. However, the simple structure of the final tree can
be misleading. In fact tree-models are unstable and small
changes in the original dataset can lead to the selection of
another variable to create a split. To facilitate the interpreta-
tion, CART allows evaluating the importance of the different
explanatory variables to define a split or more generally to
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utting terminal branches. The different subtrees are
ompared to find the optimal one. This comparison is b
n a cost-complexity measure, in which both tree accu
nd complexity are considered. The cost-complexity pa
terRα(T) is used and for each subtreeT it is defined as follow

16]:

α(T ) = R(T ) + α|�T |
ith R(T) the average within-node sum of squares,|�T | the

ree complexity, defined as the total number of nodes o
ubtree, andα is the complexity parameter, which is a pen
or each additional terminal node. During the pruning pro
ure,α is gradually increased from 0 to 1 and for each va
f α, the tree is selected which minimizesRα(T). For a value
f α equal to zero,Rα(T) is minimized by the maximal tre
y gradually increasingα a series of trees with decreas
omplexity is then obtained[16].

.1.3. Selection of the optimal tree
From the obtained sequence of subtrees, the optima

o be selected. The selection is based on the evaluation
redictive error. The predictive error is often evaluated u
ross-validation[16]. In cross-validation (CV) a number
bjects are randomly removed from the data set, and us
test set to evaluate the predictive power of the tree,
ith the remaining data[20]. The Treeplus® module[21] for
plus® (Mathsoft, Cambridge, Massachussetts, USA)
0-fold CV. During 10-fold CV the dataset is divided in
ubsets, each containing a similar distribution of the resp
ariable. One of these subsets is then used to evalua
escribe the response variable in the selected datase
echnique used for this purpose is called the “variable r
ng method”[16].

A variable which is not selected in the final tree str
ure could be considered as less important in describin
ataset, but it is possible that this variable is masked. I
een noted, that although a variablex1 never occurred in th
nal tree structure, it could be an important variable in a
ree, which is almost as accurate as the original one and w
s build after removing the masking variablex2. In such a sit
ation the variable ranking method is capable to detec

mportance of the variablex1.
The importance of a variablexm is defined as:

(xm) =
∑
t ∈ T


I(s̃m, t)

ith 
I(s̃m, t) = max 
IC1(sm, t), which equals the max
al decrease in node impurity for the division of a parent n

into daughter nodesC1 andC2 guided by a surrogate splits̃m.
his maximal decrease in node impurity is summed for e
odet of the optimal subtreeT to obtain the importance of
ariable. The procedure is repeated for each of the use
criptive variables. A surrogate split is defined by a surro
ariable. This variable is the next most important varia
ollowing the selected variable. This variable gives a s
ar split of the mother group into daughter groups and g
he second best reduction in impurity of the mother gr
nto the daughter groups. Surrogate splits can also be u
olve the problem of missing values. In this situation, CA
ill use the surrogate variable to define in which daug
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group an object, with missing primary variable value, will be
classified. The importance values allow to rank the different
explanatory variables from high to low importance. In this
way, the most important variables to describe the response
can be identified and CART can be used for feature selection
[16].

2.2. Molecular descriptors

A molecular descriptor is the final result of a logical and
mathematical procedure, which converts chemical informa-
tion from a symbolic representation of the molecule into a
useful numeric value (theoretical descriptor) or is the result
of a standardized experiment (experimental descriptor)[22].

There are different ways by which molecular descriptors
are classified. The simplest way is by their origin, i.e. in
theoretical and experimental descriptors. The theoretical
descriptors can be further classified depending on the
molecular representation they are derived from. The simplest
representation is the molecular formula. Descriptors derived
from it are called zero-dimensional (0D) (e.g. molecular
weight, atom-counts,. . .). One-dimensional (1D) descriptors
are derived from a substructure list representation of the
molecule (e.g. logP calculated with the method of Rekker
[23]). Two-dimensional (2D) (e.g. connectivity indices[22])
and three-dimensional (3D) (e.g. the molecular volume and
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Table 1
The absorption data for the 141 molecules (extracted from[12])

Number Substance %HIA

1 Acarbose 1.5
2 Acebutolol 89.75
3 Acetaminophen 85
4 Acetylsalicylic acid 100
5 Acrivastine 88
6 Acyclovir 25
7 Adefovir 12
8 Alprenolol 93.75
9 Aminopyrine 100

10 Amoxicillin 93.75
11 Amphotericin B 5
12 Amrinone 93
13 Antipyrine 100
14 Atenolol 51
15 Atropine 90
16 Azithromycin 36
17 Aztreonam 1
20 Benazepril 37
19 Benzylpenicillin 27.5
20 Betaxolol 90
21 Bornaprine 100
22 Bretyliumtosylate 23
23 Bromazepam 84
24 Bromocriptine 28
25 Bumetanide 100
26 Bupropion 87
27 Caffeine 100
28 Camazepam 99
29 Captopril 68
30 Cefatrezine 76
31 Ceftriaxone 1
32 Cefuroxime 5
33 Cefuroximeaxetil 36
34 Cephalexin 98.5
35 Chloramphenicol 90
36 Chlorothiazide 23.75
37 Cimetidine 82.5
38 Ciprofloxacin 84.5
39 Cisapride 100
40 Clonidine 96.25
41 Codein 95
42 Corticosterone 100
43 Cromolynsodium 0.5
44 Cymarin 47
45 Cyproterone acetate 100
46 Dexamethasone 98
47 Diazepam 99.25
48 Doxorubicin 5
49 Enalapril 66
50 Enalaprilat 17.5
51 Erythromycin 35
52 Ethambutol 77.5
53 Ethinylestradiol 100
54 Etoposide 50
55 Felbamate 92.5
56 Fenoterol 60
57 Fluconazole 96.25
58 Foscarnet 17
59 Fosinopril 36
60 Fosmidomycin 30
61 Furosemide 61
62 Gabapentin 50
63 Ganciclovir 3.6
ifferent geometrical and steric descriptors[22]) descriptors
re calculated from a topological and a geometrical mole
epresentation, respectively. Finally, the descriptors de
rom a stereo-electronic or lattice representation, are c
our-dimensional (4D). The different descriptors wit
hese classes often are further classified in subclasses.
nformation can be found in ref.[22].

. Materials and methods

.1. Data

The data set used consisted of 141 molecules extr
rom Zhao et al.[12]. The drug and drug-like compoun
nd their percent human intestinal absorption (%HIA)

isted inTable 1. These molecules were selected because
epresent absorption data for a high diversity of structure
hey cover the whole range of the absorption scale (0–1

.2. Three-dimensional molecular structures

The 3D structures of the molecules were calculated u
he Hyperchem® 6.03 professional software (Hypercu
ainesville, Florida, USA). After the input of the molec
s a topological structure, geometry optimisation
erformed by the Molecular Mechanics Force Field me
MM+) using the Polak-Ribìere conjugate gradient algorith
ith a RMS gradient of 0.1 kcal/(Å mol) as stop criterion
his computational optimisation of the structure result



E. Deconinck et al. / Journal of Pharmaceutical and Biomedical Analysis 39 (2005) 91–103 95

Table 1 (Continued)

Number Substance %HIA

64 Gentamicin-C1 0
65 Guanabenz 75
66 Guanoxan 50
67 Hydrochlorothiazide 72.75
68 Hydrocortisone 90.25
69 Imipramine 96.25
70 Indomethacin 100
71 Iothalamatesodium 1.9
72 Isoxicam 100
73 Isradipine 92.5
74 Labetalol 93.75
75 Lactulose 0.6
76 Lamotrigine 70
77 Levodopa 85
78 Lincomycin 27.5
79 Lisinopril 25
80 Loracarbef 100
81 Lormetazepam 100
82 Lovastatin 30.5
83 Mannitol 20
84 Meloxicam 90
85 Metaproterenol 44
86 Methotrexate 80
87 Methyldopa 41
88 Methylprednisolone 82
89 Metolazone 63
90 Metoprolol 95
91 Morphine 100
92 Nadolol 31
93 Nefazodone 100
94 Naloxone 91
95 Nordiazepam 99
96 Norfloxacin 35
97 Olsalazine 2.3
98 Ouabain 1.4
99 Oxatomide 100

100 Oxazepam 98.5
101 Oxprenolol 91.75
102 Phenoxymethylpenicillin 45
103 Phenytoin 90
104 Pindolol 91.75
105 Piroxicam 100
106 Practolol 98.75
107 Pravastatin 34
108 Prazosin 100
109 Prednisolone 98.9
110 Progesterone 93.25
111 Propranolol 92.5
112 Propiverine 84
113 Propylthiouracil 75
114 Quinidine 80.25
115 Raffinose 0.3
116 Ranitidine 52.75
117 Reproterol 60
120 Saccharin 88
119 Salicylic acid 100
120 Scopolamine 92.5
121 Sorivudine 82
122 Sotalol 96.25
123 Spironolactone 73
124 Sudoxicam 100
125 Sulfasalazine 38.75
126 Sulindac 90
127 Sulpiride 36

Table 1 (Continued)

Number Substance %HIA

128 Sumatriptin 70
129 Terazosin 93.25
130 Terbutaline 66.5
131 Testosterone 100
132 Theophylline 96
133 Timolol maleate 85.5
134 Tranexamicacid 55
135 Trimethoprim 97
136 Trovoflaxicin 88
137 Venlafaxine 92
138 Verapamil 95
139 Warfarin 98.5
140 Ximoprofen 100
141 Zidovudine 100

a data matrix consisting of the Cartesian coordinates of
the atoms. This data matrix is then used to calculate the
molecular descriptors.

3.3. Calculating molecular descriptors

The majority of the molecular descriptors were calculated
with Dragon® 4.0 academic version software[24]. It allows
calculating 48 constitutional descriptors, 119 topological
descriptors, 47 walk and path counts, 33 connectivity
indices, 47 information indices, 96 2D autocorrelations,
107 edge adjacency indices, 64 BCUT-descriptors, 21
topological charge indices, 44 eigenvalue-based indices, 41
Randic molecular profiles, 74 geometrical descriptors, 150
RDF descriptors, 160 3D-MoRSE descriptors, 99 WHIM
descriptors, 197 GETAWAY descriptors, 121 functional
group counts, 120 atom-centered fragments, 14 charge
descriptors and 10 molecular properties. The software
automatically eliminates constant variables in a given data
set. For descriptors with a correlation higher than 0.98,
parameters are set that only one is retained in the dataset. For
more information about the above descriptors we refer to
ref. [22]. The Hyperchem® 6.03 professional software and
the ACD-Labs® 6.0 software (Advanced Chemistry Devel-
opment, Toronto, Ont., Canada) were used to calculate the
f face
a vity,
m sion
s Mc
G ham
e
c onni
[

3

u e,
M ed as
r ptors
ollowing additional descriptors: solvent accessible sur
rea, molecular volume, hydration energy, molar refracti
olar polarisability, molar mass, parachor index, ten

urface, density and the acidity constants. Further the
owans molecular volume, a parameter applied by Abra
t al. in the linear free energy relationship[5,25], was
alculated manually according to Todeschini and Cons
22].

.4. Building tree models

The tree models were build using the Treeplus® mod-
le [21] in the Splus® software (Mathsoft, Cambridg
assachussetts, USA). The absorption data were us

esponse variables and the different molecular descri
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as explanatory variables. Since the response variable is con-
tinuous the resulting tree models are called regression trees.

4. Results and discussion

4.1. Building tree-models

The models are build using the absorption data of all 141
molecules. During the building process the maximal tree is
build and pruned. In the next step, 10-fold CV is carried out
resulting in a graph of the RMSECV as a function of the
tree complexity (Fig. 2). This graph allows selection of the
most suited tree. The best tree (with minimal RMSECV) se-
lected by the program has a complexity of three leafs. The
leafs in this tree (Fig. 3) cover a wide part of the absorp-
tion range, particularly class c. This means that the obtained
model cannot be used for our purpose, i.e. the definition of
classes with a limited absorption range. Since the response
variable is continuous, a regression tree is obtained and the
impurity of the nodes is evaluated by the RMSECV, which
in fact is the sum of the squared deviation of the absorption
values of the molecules in the classes to the mean absorption
value of that class. This means that the RMSECV is a good
evaluation criterion for regression but not for classification,
s ve a
q it is
p plex
t raph
( the
s cted:
( ab-
s ss is
g ubbs

F error
o devi-
a The
h or.

Fig. 3. Optimal regression tree for the absorption values of the 141
molecules, using all calculated descriptors. Classes (a–c) are identified by
the mean of the absorption values of its objects, the number of objects and
the absorption range of the class, respectivily.

test [19], were removed and (iii) the total number of out-
liers in the model is less than 5% of all molecules used in
the model building. A leaf defined by less than five objects
is considered as undefined. After selection of the model the
absorption range of each class was defined by the lowest and
highest value in the class after removing the outliers. Based
on the ranges the different absorption classes of the dataset
were labelled as follows: class 1, 0–25%; class 2, 26–50%;
class 3, 51–70%; class 4, 71–90% and class 5, more than 90%
human intestinal absorption. For model building, it was al-
lowed that the range of a leaf covers two consecutive classes.
The leaf is then labelled with both class numbers. If the range
covers more than two classes, labelling was based on the two
most represented consecutive classes.

Models were build using three different descriptor sets.
The first consists of all calculated descriptors. The second
of the 2D descriptors (constitutional descriptors, topological
descriptors, walk and path counts, connectivity indices,
information indices, 2D autocorrelations, edge adjacence
indices, BCUT-descriptors, topological charge indices,
eigenvalue based indices, functional group counts and atom
centered fragments) and the molecular properties calculated
with the Dragon® software, the parameters calculated
with Hyperchem® and ACD-Labs® as well as the Mc
Gowans volume. The third descriptor set consists of the
3D descriptors (randic molecular profiles, geometrical de-
s IM
d ors)
a
p
a

ince an object can be classified correctly but still ha
uite high deviation of the mean of the class in which
redicted. Therefore, it was decided to look at more com

rees, which can be evaluated starting from the same g
Fig. 2). Each tree was evaluated visually starting with
mallest. As a general rule the smallest tree was sele
i) in which each leaf represents less than 50% of the
orption range; (ii) where the number of objects in a cla
reater than 5 after the outliers, evaluated with the Gr

ig. 2. The tree complexity as a function of the root mean squared
f cross validation (RMSECV).Vertical lines represent the standard
tion around the RMSECV values for the different tree-complexities.
orizontal line represent the minimal RMSECV-value +1 standard err
criptors, RDF-descriptors, 3D-MoRSE descriptors, WH
escriptors, GETAWAY descriptors, charge descript
nd the molecular properties calculated with Dragon®, the
arameters calculated with Hyperchem® and ACD-Labs®,
nd the Mc Gowans volume.
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Fig. 4. Model 1 for the dataset of 141 molecules using all descriptors (first descriptor set) Classes (a–l) are identified by the mean of the absorption values of
its objects, the number of objects, the absorption range of the class and the class label respectivily.

For the first descriptor set a model with complexity 11 is
selected (model 1,Fig. 4). All classes represent less than 50%
of the absorption range, only two undefined classes (classes
defined by less than five molecules), d and i, are present and
only three outliers (aztreonam, iothalamate sodium and nor-
floxacin) could be detected. Labelling of the different classes
was carried out as shown inFig. 4.

For the second descriptor set also a model with 11 leaves
is selected (model 2,Fig. 5). Ten classes cover less than half
the absorption range, class g covers a little more (54%). Still
the model was selected as a compromise between the classi-
fication and the complexity of the tree. Selection of a more
complex tree in which class g is split into two smaller classes
results in a high number of undefined classes, resulting in a
loss of information. Four undefined classes are present in the
model (classes d, f, h, and i) and four outliers (aztreonam,
iothalamate sodium, reproterol and benazepril) could be de-
tected. Labelling of the classes was carried out as shown in
Fig. 5.

The third descriptor set resulted in the selection of a model
with complexity 10 (model 3,Fig. 6). All classes except class
g cover less than 50% of the absorption range. The model was

selected based on the same arguments as for the previous
model. Only two undefined classes are present in the model
(classes d and f) and two outliers (norfloxacin and gabapentin)
could be detected. Labeling of the classes was carried out as
shown inFig. 6.

Comparison of the three models shows that the best model
is obtained with all descriptors, since no class covers more
than half of the absorption range and the number of unde-
fined classes and outliers is lowest. In the second model it
was necessary to come to a compromise between complexity
and classification, also the number of undefined classes and
outliers is higher. Even though a less complex model was ob-
tained with the third descriptor set, also a compromise had to
be found, while the number of undefined classes and outliers
is comparable with the first model. This is a first indication
of the fact that the combination of 2D and 3D descriptors in
CART can be very valuable (see also Section4.2).

4.2. The selected descriptors

In model 1 (Fig. 4) the first split is defined by the topo-
logical descriptor T(O . . O), which represents the sum of
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Fig. 5. Model 2 for the dataset of 141 molecules using the second descriptor set. Classes (a–l) are identified as inFig. 4.

topological distances between oxygen atoms[22]. For the
rest of the tree the importance of the 2D-autocorrelation
descriptors can be noted (Moran autocorrelation-lag
1/weighted by atomic electronegativities (MATS1e) and
Geary autocorrelation-lag 4/weighted by atomic van der
Waals volumes (GATS4v)). Further, the number of tertiary
C(sp3) (nCrHR) and the average connectivity index chi-2
(X2A) [22] are selected. Interesting is the selection of the
n-octanol/water partition coefficient logP. logP is a measure
for the hydrofobicity of a molecule and is considered as one
of the most important properties of molecules for their pas-
sage through biomembranes[6–8]. From the 3D descriptors
the 3D-MoRSE descriptor Mor19 m (3D-MoRSE signal
19/weighted by atomic masses) is selected as well as the
WHIM descriptors E3s (third component accessibility direc-
tional WHIM index/weighted by atomic electrotopological
states) and E3m (third component accessibility directional
WHIM index/weighted by atomic masses).

In the second model (Fig. 5) the first five splits are
identical to these in model 1. The selected descriptors are
T(O . . O), MATS1e,nCrHR, logP, X2A, the Edge Adjacency
Index EEig01r (Eigenvalue 01 from edge adjacency ma-
trix weighted by resonance integrals), the 2D-autocorrelation
descriptor GATS6e (Geary autocorrelation-lag 6/weighted

by atomic Sanderson electronegativities), the atom-centered
fragment H-048 (H attached to C2(sp3)/C1(sp2/C0(sp)) and
the constitutional descriptor Ss (sum of Kier-Hall electro-
topological states).

In the third model (Fig. 6), the selected descriptors are
the geometrical descriptors geometrical distance between
oxygen atoms (G(O . . O)) and gravitational index G1 (G1),
the surface tension, logP and the polar surface area (PSA)
calculated with ACD-Labs®, the GETAWAY-descriptor R6v
(R autocorrelation of lag 6/weighted by atomic van der
Waals volumes), the WHIM-descriptor L3s (third component
size directional WHIM index/weighted by atomic electro-
topological states) and the 3D-MoRSE descriptor Mor24u
(3D-MoRSE signal 24/unweighted). More information
about these descriptors can be found in ref.[22].

In the previous section, the classification is found worse
in models 2 and 3 than in the first model. In the first model,
the first five splits are defined by 2D descriptors. The rough
classification by these descriptors is then refined by 3D
descriptors. This conclusion is confirmed by the fact that in
the second model the first five splits are identical to model
1. Replacement of the 3D descriptors by 2D, in model 2,
results in less significant splits, resulting in more outliers
and broader classes. Therefore, it seems that 3D descriptors
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Fig. 6. Model 3 for the dataset of 141 molecules the third descriptor set. Classes (a–j) are identified as inFig. 4.

can add significant information to the model. If only 3D
descriptors are used, as in model 3, also a less good splitting
of the molecules is obtained. The above indicates that the
combination of the two types of descriptors gives the best
description of the used dataset.

4.3. Predictive power

To evaluate the predictive power of the obtained models
another subset of the Zhao dataset[12] is used as test set.
This test set consists of the HIA-values of 27 molecules
(Table 2). It can be noticed that the test set contains only
substances with a high %HIA value. Better would have
been to be able to create one containing substances for
all classes. However, the selection of this test set can be
justified as follows. In practice, HIA values are mainly
reported for molecules with a high HIA value, because
those with a low value are already eliminated during earlier
drug molecule screening procedures. Measuring the HIA
values is slow, expensive and time-consuming. Therefore,
the few molecules with low HIA values in the dataset, were
included in the training set. For the molecules of the test
set the relevant descriptors were calculated. Based on their

HIA-value the molecules were labelled as belonging to one
of the five absorption classes defined in previous sections.
The calculated descriptors were then used to assign the
molecules to one of the classes (nodes) in the different CART
models. A molecule was considered correctly classified
if the label of the molecule corresponded to the leaf in
which it is classified by the model. The results for model
1 are 24 molecules correctly classified (88.9%) and three
misclassified (glycine, granisetron, tolmesoxide) (11.1%);
for model 2: 23 molecules correctly classified (85.2%), three
molecules misclassified (glycine, tolmesoxide, viloxazine)
(11.1%) and one molecule classified in an undefined class
(granisetron) (3.7%), and for model 3: 21 molecules cor-
rectly classified (77.8%) and six misclassified (carfecillin,
cicaprost, disulfiram, fluvastatin, gallopamil, sultopride)
(22.2%). These results show that the three models have a high
predictive power, with model 1 slightly better than the two
others. Since the used test set consists mainly of molecules
with high absorption values (class 5), the prediction of this
test set is not representative for the prediction over the full
absorption range. The selection of another test set covering
the whole absorption range is not possible. This is due to
the fact that too few objects with low absorption are present
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Table 2
External test set (extracted from[12])

Number Substance %HIA

1 Carfecillin 100
2 Cicaprost 100
3 Clofibrate 96
4 Desipramine 98.75
5 Diclofenac 100
6 Disulfiram 91
7 Felodipine 100
8 Fenclofenac 100
9 Fluvastatin 97.5

10 Gallopamil 100
11 Glycine 100
12 Granisetron 100
13 Ibuprofen 100
14 Ketoprofen 100
15 Ketorolac 100
16 Mexiletine 100
17 Minoxidil 95
20 Naproxen 97.75
19 Nicotine 100
20 Nizatidine 99
21 Ondansetron 100
22 Phenglutarimide 100
23 Praziquantel 100
24 Sultopride 100
25 Tolmesoxide 100
26 Valproic acid 100
27 Viloxazine 100

in the dataset. Deleting these objects would result in bad
modeling in the lower part of the absorption range. Therefore,
it was decided to carry out also a manual 10-fold CV. The
difference with the CV included in the CART methodology
is that the misclassification rate was not evaluated by
the RMSECV but by the mean number of correctly and
misclassified molecules. The dataset of 141 molecules was
divided in 10 equal parts of 14 molecules. Each part contains
exclusive molecules with absorption values representative
for the complete dataset. One part is used to evaluated the
predictive abilities of the model build with the other nine
parts. This procedure is repeated 10 times, in which each part
is used once as test set. The trees were built according to the
higher specified criteria. This resulted in trees very similar
to those inFigs. 4–6. The prediction results for all molecules
from the 10 trees are as follows: model 1: 92 objects
correctly classified, 38 objects misclassified and 10 objects
misclassified; model 2: 88 objects correctly classified, 39
objects misclassified and 13 objects undefined; model 3: 88
objects correctly classified, 40 objects misclassified and 12
objects undefined. These results show again that the three
types of models have a good predictive power with slightly
better results for the model using all descriptors.

In general, it can be concluded that the model built with
all descriptors shows the best results in descriptive as well as
predictive power.

Table 3
The 50 selected molecular descriptors by the variable ranking method. Thei

Abbreviation Name

logP n-Octanol/water partition coefficient
PSA Polar surface area
HyHydrat. E Hydration energy with

R1e R-autocorrelation of lag 1/weighted by atomic San
T(O . . O) Sum oftopological distances between oxygen atom
H-050 H attached to heteroatom
SEige Eigenvalue sum from electronegativity weighted d
GATS2v Geary autocorrelation-lag 2/weighted by atomic va
RDF060m Radial distribution function-6.0/weighted by atomi
ACDDens Density ed

SEigv Eigenvalue sum from van der Waals weighted dist
nO Number of oxygen atoms
DELS Molecular electrotopological variation
nCrHR Number of ring tertiary C(sp3)
BAC Balaban centric index
GATS2p Geary autocorrelation-lag 2/weighted by atomic po
IC5 Information content index (neighborhood symmetr
MATS1e Moran autocorrelation-lag 1/weighted by atomic S
ACDTens Surface tension lated

RDF065m Radial distribution function-6.5/weighted by atomi
HNar Narumi harmonic topological index
PCR Ratio of multiple path count over path count
SEigZ Eigenvalue sum fromZ weighted distance matrix (Ba
Ms Mean electrotopological state
AlogP Ghose-Crippen octanol–water partition coefficient
Mor10m 3D-MoRSE signal 10/weighted by atomic masses
RDF020v Radial Distribution Function-2.0/weighted by atom
H3u H autocorrelation of lag 3/unweighted
r abbreviation, name and class

Class

Molecular properties
Molecular properties

QSAR-properties calculated
Hyperchem®

derson electronegativities GETAWAY descriptors
s Topological descriptors

Atom-centered fragments
istance matrix Eigenvalue based indices
n der Waals volumes 2D-autocorrelations

c masses RDF-descriptors
Macroscopic properties calculat
with ACD-labs®

ance matrix Eigenvalue based indices
Constitutional descriptors
Topological descriptors
Functional group counts
Topological descriptors

larizabilities 2D-autocorrelations
y of 5-order) Information indices
anderson electronegativities 2D-autocorrelations

Macroscopic properties calcu
with ACD-labs®

c masses RDF-descriptors
Topological descriptors
Walk and path counts

rysz matrix) Eigenvalue-based descriptors

Constitutional descriptors
Molecular properties
3d-MoRSE descriptors

ic van der Waals volumes RDF-descriptors
GETAWAY descriptors
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Table 3 (Continued)

Abbreviation Name Class

RTm R total index/weighted by atomic masses GETAWAY-descriptors
ATS1m Broto-Moreau autocorrelation of a topological structure-lag 1/weighted by atomic masses 2D-autocorrelations
RDF020m Radial distribution function-2.0/weighted by atomic masses RDF descriptors
RDF045m Radial distribution function-4.5/weighted by atomic masses RDF-descriptors
Mor16m 3D-MoRSE signal 16/weighted by atomic masses 3d-MoRSE descriptors
RDF010m Radial distribution function-1.0/weighted by atomic masses RDF descriptors
Mor05m 3D-MoRSE signal 05/weighted by atomic masses 3d-MoRSE descriptors
BLTD48 Verhaar model of Daphnia base-line toxicity from MlogP (mmol/l) Molecular properties
Ss Sum of Kier-Hall electrotopological states Constitutional descriptors
ATS8m Broto-Moreau autocorrelation of a topological structure-lag 8: weighted by atomic masses 2D-autocorrelations
GGI9 Topological charge index of order 9 Topological charge indices
RDF080m Radial distribution function-8.0/weighted by atomic masses RDF descriptors
MAXDN Maximal electrotopological negative variation Topological descriptors
RDF050m Radial distribution function-5.0/weighted by atomic masses RDF descriptors
RDF035m Radial distribution function-3.5/weighted by atomic masses RDF descriptors
RDF075m Radial distribution function-7.5/weighted by atomic masses RDF-descriptors
PW4 Path/walk 4-Randic shape index Topological descriptors
J3D 3D-Balaban index Geometrical descriptors
Mor03u 3D-MoRSE signal 03/unweighted 3d-MoRSE descriptors
RDF040p Radial distribution function-4.0/weighted by atomic polarizabilities RDF descriptors
Mor01m 3D-MoRSE signal 01/weighted by atomic masses 3d-MoRSE descriptors
ATS7m Broto-Moreau autocorrelation of a topological structure-lag 7: weighted by atomic masses 2D-autocorrelations

Fig. 7. Model for the dataset of 141 molecules using the 50 descriptors selected through variable ranking. Classes (a–j) are identified as inFig. 4(descriptors,
seeTable 3).
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4.4. Variable ranking

In this section the possibility of CART as variable selection
method was evaluated. Therefore, the previous build model
using all descriptors (model 1) was used as starting point.
The variable ranking method was applied to this model. The
fifty most important descriptors (Table 3) were used to select
a new descriptor set.

In Table 3, the descriptors are ranked in descending order
of importance. The two most important descriptors selected
by the method are logP and the polar surface area (PSA).
The importance of logP in absorption processes was already
mentioned higher[6–8]. The PSA is defined as the part of
the surface area of the molecule associated with oxygen, ni-
trogens, sulfurs and the hydrogens bonded to any of these
atoms[22,26]. It is a measure for the H-bonding capacity of a
molecule. It has been found that processes involving passive
diffusion depend primarily on these H-bonding properties
[10]. This shows that CART is capable to select the descrip-
tors, mentioned in the literature to be important in absorption
processes.

The thus obtained descriptor set was used to build a new
model (Fig. 7), according to the above mentioned rules. A
model with complexity 11 was selected. All classes repre-
sent less than 50% of the absorption range, four undefined
classes (classes d, h, e and f) are present and three outliers
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geometrical properties of a molecule play a major part in
the process of membrane passage. In the models based
on all descriptors (model 1 and related models obtained
during CV) it is observed that the first splits are always
defined by 2D descriptors or molecular properties. The 3D
descriptors usually define the latter splits in the models. This
indicates that 3D descriptors give a refinement of the model,
resulting in better descriptions of datasets and more accurate
predictions of test sets.

It is demonstrated that CART can also be used as a variable
selection method, resulting in models almost without loss of
information.

Generally we can conclude that CART can be a useful
tool in QSAR studies. It is capable of selecting the most
important descriptors out of hundreds of descriptors and of
giving a close description of the used datasets.
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