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Abstract

Classification and regression trees (CART) were evaluated for their potential use in a quantitative structure-activity relationship (QSAR)
context. Models were build using the published absorption values for 141 drug-like molecules as response variable and over 1400 molecular
descriptors as potential explanatory variables. Both the role of two- and three-dimensional descriptors and their relative importance were
evaluated.

For the used dataset, CART models showed high descriptive and predictive abilities. The predictive abilities were evaluated based on
both cross-validation and an external test set. Application of the variable ranking method to the models showed high importances for the
n-octanol/water partition coefficient (Id®) and polar surface area (PSA). This shows that CART is capable of selecting the most important
descriptors, as known from the literature, for the absorption process in the intestinal tract.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction screening of diverse candidate drug molecules. Next to
these techniques based on artificial membranes, isolated
A major problem in drug discovery is that molecules posi- gut-segments or cultivated intestinal cells, HPLC-methods
tively screened for their interaction with target molecules fail were developed, using either classical reversed-phase
to become drugs because of non-proper absorption, distri-conditions[3], special stationary phases or special mobile
bution, metabolisation, elimination and toxicity (ADMET)- phaseqd1,2,4,5] A method with a special stationary phase
properties. Therefore, different methods are being developedis immobilized artificial membrane (IAM)-chromatography
to screen these molecules for their ADMET-properties in an [1,2], which uses a stationary phase containing fosfatidyl-
early stage of the drug development. This work considers choline groups, to mimic the lipophilic environment of the
the problem of screening for absorption properties in the celmembrane$4]. This method considers that a molecule
gastro-intestinal tract. Different in vitro techniques, like with a relatively high retention on the IAM-column should
Caco-2 membrane permeability, Parallel Artificial Mem- have a good permeability through celmembranes. It should
brane Permeability Assay (PAMPA) and animal tissue basedbe noted that molecules with very high retention times will
methods, have been discussed by several auffid?sbut dissolve in the lipophylic environment of the celmembrane
these techniques are not very valuable in the high-throughputand show a low permeability. It has been reported that
this technigue can give a classification from low to high
* Corresponding author. Tel.: +32 2 477 47 34: fax: +32 2 477 4735, @bsorption in a dataset of related molecules, but not in more
E-mail addressyvandh@vub.ac.be (Y.V. Heyden). diverse datasetfl]. This is because the IAM-technique
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only considers passive diffusion and not carrier-mediated
or active transport through the celmembrane. Detroyer et al. @
[5] reported the use of a special mobile phase, in example
a micellar liquid chromatography technique, which gives
a good correlation between the retention factors and the
n-octanol/water partition coefficient, Id®) Since lodP is o< X < s
considered to be an estimate related to the partitioning over — —
bio-membrane$6-8], the MLC technique can possibly be | Xq <y
used to screen the absorption of molec(i®ds ‘ | | ‘ | ‘

In drug development the application of in silico techniques 5&
is of special interest because they can be used in the very
first stages. Different mathematical models were developedFig. 1. General structure of a CART-modgl,is the selected split variable
in the past years. These models are called “quantitative andai is the selected split value.
structure-activity relationships” (QSAR) and relate molec-
ular activities, like absorption, to the structural properties 2. Theory
of the molecule, described by molecular descriptors. An
example of such a relationship is the frequently used Lipinski 2.1. Classification and regression trees
rule of five[6], which considers that poor absorption is more
likely when a molecule answers positive to two or more of CART is a non-parametric statistical method, which uses
the following rules: more than five H-bond donors, more adecision tree to solve classification and regression problems
than 10 H-bond acceptors, the molecular weight is higher using both categorical and continuous variables. The method
than 500 and the calculated IBgs higher than 5. Another ~ was developed by Breiman et §16] in order to build a de-
example is the linear free energy relationship (LFER) of Cision tree which describes one response variable (univariate
Abraham et al[10]. This relationship relates activities, like ~CART), e.g. absorption as a function of different explanatory
solubility, partitioning between hydrophylic and lipophylic variables, e.g. molecular descriptorSig. 1). When the
phases, blood—brain distribution, cell permeability, and dependent variable is categorical, CART produces a classifi-
human intestinal absorption to five molecular descriptors. cation tree, when it is continuous it will lead to a regression

The relationship can be written as: tree.
A CART analysis generally consists of three steps. In a
SP=c+¢eE+sS+aA+bB+vV first step an overgrown tree is build, which closely describes

the training set. This tree is called the maximal tree and is

where SP is the response variable or molecular actkvitlye grown using a binary split-procedure. In a next step the over-
excess molar refractiorg the solute polarity/polarisability, — grown tree, which shows overfitting, is pruned. During this
A the solute H-bond acidityB the solute H-bond basicity  procedure a series of less complex trees is derived from the
andV is the Mc Gowan characteristic molar volume, while maximal tree. In the final step, the tree with the optimal tree
C, € a b and v are regression coefficien{d0]. In the size is selected using a cross-validation (CV) procefil6k
literature many QSAR-models can be found using advanced
regression techniques like multivariate linear regression » 1 1. Building the maximal tree
(MLR), principal component regression (PCR), partial least  The maximal tree is build using a binary split procedure,
squares (PLS) and neural networks (Ni)~15} which starts at the tree-root. The tree-root consists of all

This paper wants to introduce a new approach in QSAR. gpjects of the training set. At each level, a mother group
Where the models described above try to exactly predictjs considered which is split in two exclusive daughter
the activities (here absorption) of molecules, we aim at groyps. In the next step, every daughter group becomes a
predicting absorption classes, ranging from low to high ab- mother group. Every split is described by one value of one
sorption. A relatively new technique in QSAR, classification gescriptor, chosen in such a way that all objects in a daughter
and regression trees (CART)6], will be evaluated on its  group have more similar response variable values. The split
ability to classify molecules in absorption classes and onits o continuous variables is defined by €a" where x; is
predictive power. All previously mentioned models require the selected explanatory variable amdts split value.
variable selection before modeling can be started. In CART, 1 choose the most appropriate descriptor for a splitand its
the variable selection is part of the methodology. This means gpjit yvalue, CART uses an algorithm in which all descriptors
that modelling can be started with an extended set of descrip-and all split values are considered. The split which gives the
tors. The CART-methodology was already used successfully yest reduction in impurity between the mother grapdnd

in quantitative structure-retention relationships (QSRR) by ihe daughter groupd,(andtg) is selected. Mathematically
Put et al.[17]. The latter relationships relate the retention s js expressed as:

of molecules on chromatographic systems to molecular
descriptorg18]. Ai(s, tp) = ip(tp) — pLi(tL) — pri(tR)
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wherei is the impurity,s the candidate split value, anl predictive error of the tree build with the other nine subsets.
andpg are the fractions of the objects in the left and the right This procedure is repeated ten times using each time another
daughter group, respectively. subset as test set. The most accurate tree is the one with the

For regression trees, the impuritys usually defined as smallest mean CV error, defined as the root mean squared

the total sum of squares of the deviations of the individual €rror of cross validation (RMSCEV):
responses from the mean response of the group in which the

considered molecule is classifiglb,17]; RMSECV — Yo (i = 3i)
n n
i(r) = Z(yn —y(10)? with y; is the response value of objety; the predicted
n=1

response value for objecandn the total number of objects.

with i(t) the impurity of groug, y, the value of the response  The Treeplu& module identifies the optimal tree as the least
variable for objeck, andy(r) the mean of the response vari- complex one with an RMSECV within one standard error
able in group. of the most accurate tree. The idea here is to choose a less

This splitting procedure is repeated for each daughter complex tree with a predictive error comparable to that of the
group until the maximal tree is grown. The maximal tree Most accurate on@6].
is defined as the tree in which every end node (leaf) consists
of one object, or of a predefined number of objects, or of 2.1.4. Variable ranking

homogeneous groups. In general it can be stated that tree-structured models are
easier to understand than more classical models like PLS
2.1.2. Tree-pruning or PCR. However, the simple structure of the final tree can

The maximal tree usually shows overfitting. As with other be misleading. In fact tree-models are unstable and small
modeling techniques it is necessary to find a compromise changes in the original dataset can lead to the selection of
between tree complexity and its predictive poidd]. another variable to create a split. To facilitate the interpreta-

During the pruning procedure a series of smaller subtreestion, CART allows evaluating the importance of the different
derived from the maximal tree is obtained by successively explanatory variables to define a split or more generally to
cutting terminal branches. The different subtrees are thendescribe the response variable in the selected dataset. The
compared to find the optimal one. This comparison is basedtechnique used for this purpose is called the “variable rank-
on a cost-complexity measure, in which both tree accuracy ing method"[16].
and complexity are considered. The cost-complexity param- A variable which is not selected in the final tree struc-
eterR,(T) is used and for each subtrééis defined as follow ture could be considered as less important in describing the
[16]: dataset, but it is possible that this variable is masked. It has

— been noted, that although a variakienever occurred in the
Ro(T) = R(T) + el T final tree structure, it could be an important variable in a new
with R(T) the average within-node sum of squareg) the tree, which is almost as accurate as the original one and which
tree complexity, defined as the total number of nodes of the is build after removing the masking variabig In such a sit-
subtree, ana is the complexity parameter, which is a penalty uation the variable ranking method is capable to detect the
for each additional terminal node. During the pruning proce- importance of the variabbe;.
dure,« is gradually increased from 0 to 1 and for each value ~ The importance of a variable, is defined as:
of a, the tree is selected which minimizBg(T). For a value .
of « equal to zeroR,(T) is minimized by the maximal tree. M(xm) = Z Al(Sm, 1)

By gradually increasing a series of trees with decreasing tet

complexity is then obtained 6]. with AI(5,, t) = max Alc,(sw, t), which equals the maxi-
mal decrease in node impurity for the division of a parent node

2.1.3. Selection of the optimal tree tinto daughter node3; andC; guided by a surrogate siit,.

From the obtained sequence of subtrees, the optimal hasThis maximal decrease in node impurity is summed for each
to be selected. The selection is based on the evaluation of thenodet of the optimal subtre@ to obtain the importance of a
predictive error. The predictive error is often evaluated using variable. The procedure is repeated for each of the used de-
cross-validatiorj16]. In cross-validation (CV) a number of  scriptive variables. A surrogate splitis defined by a surrogate
objects are randomly removed from the data set, and used awariable. This variable is the next most important variable,
a test set to evaluate the predictive power of the tree, build following the selected variable. This variable gives a simi-
with the remaining datg20]. The Treeplu8 module[21] for lar split of the mother group into daughter groups and gives
Splu® (Mathsoft, Cambridge, Massachussetts, USA) uses the second best reduction in impurity of the mother group
10-fold CV. During 10-fold CV the dataset is divided in 10 into the daughter groups. Surrogate splits can also be used to
subsets, each containing a similar distribution of the responsesolve the problem of missing values. In this situation, CART
variable. One of these subsets is then used to evaluate thevill use the surrogate variable to define in which daughter
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group an object, with missing primary variable value, willbe Table1
classified. The importance values allow to rank the different The absorption data for the 141 molecules (extracted fidt)

explanatory variables from high to low importance. In this Number Substance %HIA
way, the most important variables to describe the response 1 Acarbose 5
can be identified and CART can be used for feature selection 2 Acebutolol 8975
[16]. 3 Acetaminpphen ‘ 85
4 Acetylsalicylic acid 100
. 5 Acrivastine 88
2.2. Molecular descriptors 6 Acyclovir o5
7 Adefovir 12
A molecular descriptor is the final result of a logical and 8 Alprenolol 9375
mathematical procedure, which converts chemical informa- 9 Aminopyrine 100
tion from a symbolic representation of the molecule into a ° ﬁzof]ﬁt'g'r?cm 5 93575
useful numeric value (theoretical descriptor) or is the result |, Amﬁnone 93
of a standardized experiment (experimental descrip2a) 13 Antipyrine 100
There are different ways by which molecular descriptors 14 Atenolol 51
are classified. The simplest way is by their origin, i.e. in 1° Atropine 0
theoretical and experimental descriptors. The theoretical * 22'::;:)0:;{:'” 361
descriptors can be further classified depending on the 5 Benazepril 37
molecular representation they are derived from. The simplest1g Benzylpenicillin 25
representation is the molecular formula. Descriptors derived 20 Betaxolol 90
from it are called zero-dimensional (OD) (e.g. molecular 21 Bornaprine 100
weight, atom-counts, .). One-dimensional (1D) descriptors g:iggﬁg‘;ﬂ'ate %i
are derived from a substructure list representation of the 5, Bromocriptine 28
molecule (e.g. lo® calculated with the method of Rekker 25 Bumetanide 100
[23]). Two-dimensional (2D) (e.g. connectivity indick22]) 26 Bupropion 87
and three-dimensional (3D) (e.g. the molecular volume and 27 Caffeine 100
different geometrical and steric descriptf28]) descriptors ggg}igifam 629
are calculated from a topological and a geometrical molecule 5 Cefatrezine 76
representation, respectively. Finally, the descriptors derived 31 Ceftriaxone 1
from a stereo-electronic or lattice representation, are called32 Cefuroxime 5
four-dimensional (4D). The different descriptors within 33 Cefuroximeaxetil 36
these classes often are further classified in subclasses. Morég1 gmﬁgﬁx'gemcol g}g
information can be found in ref22]. 36 Chlmothfgzide 235
37 Cimetidine 85
38 Ciprofloxacin 846
3. Materials and methods 39 Cisapride 100
40 Clonidine 9625
41 Codein 95
3.1. Data 42 Corticosterone 100
43 Cromolynsodium [
The data set used consisted of 141 molecules extracted4 Cymarin 47
from Zhao et al[12]. The drug and drug-like compounds 4 Cyproterone acetate 100
and their percent human intestinal absorption (%HIA) are B;éaengzﬂasone 99985
listed inTable 1 These molecules were selected because they g Doxorubicin 5
represent absorption data for a high diversity of structures andag Enalapril 66
they cover the whole range of the absorption scale (0—100%)50 Enalaprilat 15
51 Erythromycin 35
. . 52 Ethambutol 75
3.2. Three-dimensional molecular structures =3 Ethinylestradiol 100
54 Etoposide 50
The 3D structures of the molecules were calculated using 55 Felbamate ag
the Hyperchef® 6.03 professional software (Hypercube, 56 Fenoterol 60
Gainesville, Florida, USA). After the input of the molecule 37 Fluconazole 9@s5
as a topological structure, geometry optimisation was gg Engnaggﬁlt 3167
performed by the Molecular Mechanics Force Field method g Fosmidomycin 30
(MM+) using the Polak-Rilere conjugate gradientalgorithm g1 Furosemide 61
with a RMS gradient of 0.1 kcaﬁ(mol) as stop criterion. 62 Gabapentin 50
Ganciclovir 36

This computational optimisation of the structure results in 63
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Table 1 Continued

Number Substance %HIA Number Substance Y%HIA

64 Gentamicin-C1 0 128 Sumatriptin 70

65 Guanabenz 75 129 Terazosin 925

66 Guanoxan 50 130 Terbutaline 66

67 Hydrochlorothiazide 725 131 Testosterone 100

68 Hydrocortisone 225 132 Theophylline 96

69 Imipramine 9825 133 Timolol maleate 85

70 Indomethacin 100 134 Tranexamicacid 55

71 lothalamatesodium a 135 Trimethoprim 97

72 Isoxicam 100 136 Trovoflaxicin 88

73 Isradipine 95 137 Venlafaxine 92

74 Labetalol 9375 138 Verapamil 95

75 Lactulose ® 139 Warfarin 98

76 Lamotrigine 70 140 Ximoprofen 100

77 Levodopa 85 141 Zidovudine 100

78 Lincomycin 275

79 Lisinopril 25

80 Loracarbef 100 a data matrix consisting of the Cartesian coordinates of

2; Lormetazepam 13%? the atoms. This data matrix is then used to calculate the
Lovastatin :

a3 Marmitol 20 molecular descriptors.

84 Meloxicam 90

85 Metaproterenol 44 3.3. Calculating molecular descriptors

86 Methotrexate 80

87 Methyldopa 4l The majority of the molecular descriptors were calculated

88 Methylprednisolone 82 ith P . . f I

89 Metolazone 63 with Dragort” 4.0 academic version softwaj24]. It allows

90 Metoprolol 95 calculating 48 constitutional descriptors, 119 topological

91 Morphine 100 descriptors, 47 walk and path counts, 33 connectivity

92 Nago'o' 31 indices, 47 information indices, 96 2D autocorrelations,

gi Ezlsigggne 19010 107 edge adjacency indices, 64 BCUT-descriptors, 21

o5 Nordiazepam 99 topolqglcal charge |nd|.ces, 44 e|genval_ue—based.|nd|ces, 41

96 Norfloxacin 35 Randic molecular profiles, 74 geometrical descriptors, 150

97 Olsalazine 3 RDF descriptors, 160 3D-MoRSE descriptors, 99 WHIM

98 Ouabain 4 descriptors, 197 GETAWAY descriptors, 121 functional

13?) gf(ztzoergfrf] 1%% group counts, 120 atom-centered fragments, 14 charge

101 Oxprenolol oT5 descrlpt(_)rs anq _10 molecular prop.ertles..The _software

102 Phenoxymethylpenicillin 45 automatically eliminates constant variables in a given data

103 Phenytoin 90 set. For descriptors with a correlation higher than 0.98,

104 Pindolol 9175 parameters are set that only one is retained in the dataset. For

182 E'rfcxtglirln 18;5 more information about the above descriptors we refer to

107 Pravastatin 34 ref. [22]. The Hypercheff 6.03 professional sqftware and

108 Prazosin 100 the ACD-Lab® 6.0 software (Advanced Chemistry Devel-

109 Prednisolone 98 opment, Toronto, Ont., Canada) were used to calculate the

110 Progesterone B following additional descriptors: solvent accessible surface

ﬂ; z:ggs:r‘i’r:g gf area, molecular volume, hydration energy, molar refractivity,

113 Propylthiouracil 75 molar poIar|s§1b|I|ty, molar mass, parachor index, tension

114 Quinidine 8®5 surface, density and the acidity constants. Further the Mc

115 Raffinose 3 Gowans molecular volume, a parameter applied by Abraham

116 Ranitidine 575 et al. in the linear free energy relationship,25], was

ur Reproterol 60 calculated manually according to Todeschini and Consonni

120 Saccharin 88

119 Salicylic acid 100 [22].

120 Scopolamine 93

121 Sorivudine 82 3.4. Building tree models

122 Sotalol 9825

123 Spironolactone 73 . .

124 Sﬂdoxicam 100 The tree models were build using the Tree@lunqd-

125 Sulfasalazine 385 ule [21] in the Splu€ software (Mathsoft, Cambridge,

126 Sulindac 90 Massachussetts, USA). The absorption data were used as

127 Sulpiride 36 response variables and the different molecular descriptors



96 E. Deconinck et al. / Journal of Pharmaceutical and Biomedical Analysis 39 (2005) 91-103

as explanatory variables. Since the response variable is con- T(0..0)>102 |
tinuous the resulting tree models are called regression trees.

4. Results and discussion
4.1. Building tree-models
The models are build using the absorption data of all 141

molecules. During the building process the maximal tree is
build and pruned. In the next step, 10-fold CV is carried out

. . . MATS1e < -0.27
resulting in a graph of the RMSECV as a function of the I .
tree complexity ig. 2). This graph allows selection of the S
most suited tree. The best tree (with minimal RMSECV) se- 15.7
lected by the program has a complexity of three leafs. The (19
leafs in this tree Kig. 3) cover a wide part of the absorp- [0:50] II o o I
tion range, particularly class c. This means that the obtained b C
model cannot be used for our purpose, i.e. the definition of 17.6 71?66
classes with a limited absorption range. Since the response 13'%6%01 [lfg;l(;o]

variable is continuous, a regression tree is obtained and the

impurity of the nodes is evaluated by the RMSECV, which Fig. 3. Optimal regression tree for the absorption values of the 141
in fact is the sum of the squared deviation of the absorption molecules, using all calculated descriptors. Classes (a—c) are identified by
values of the molecules in the classes to the mean absorptioﬁhe mean of the absorption values of its objects, the number of objects and
value of that class. This means that the RMSECYV is a good N Pserption range of the class, respectivily.

evaluation criterion for regression but not for classification,

since an object can be classified correctly but still have a test[19], were removed and (jii) the total number of out-
quite high deviation of the mean of the class in which it is liers in the model is less than 5% of all molecules used in
predicted. Therefore, it was decided to look at more complex the model building. A leaf defined by less than five objects
trees, which can be evaluated starting from the same graphis considered as undefined. After selection of the model the
(Fig. 2. Each tree was evaluated visually starting with the absorption range of each class was defined by the lowest and
smallest. As a general rule the smallest tree was selectedhighest value in the class after removing the outliers. Based
(i) in which each leaf represents less than 50% of the ab- on the ranges the different absorption classes of the dataset
sorption range; (i) where the number of objects in a class is were labelled as follows: class 1, 0-25%j; class 2, 26-50%;
greater than 5 after the outliers, evaluated with the Grubbs class 3, 51-70%; class 4, 71-90% and class 5, more than 90%
human intestinal absorption. For model building, it was al-
lowed that the range of a leaf covers two consecutive classes.
The leafis then labelled with both class numbers. If the range
covers more than two classes, labelling was based on the two

1.2

1.0

most represented consecutive classes.
\\ B /w Models were build using three different descriptor sets.
15[3* - } ’/ ****************************** The first consists of all calculated descriptors. The second
S % of the 2D descriptors (constitutional descriptors, topological
E 2+ descriptors, walk and path counts, connectivity indices,
S/ information indices, 2D autocorrelations, edge adjacence

0.4

indices, BCUT-descriptors, topological charge indices,
eigenvalue based indices, functional group counts and atom
centered fragments) and the molecular properties calculated
with the Dragoff software, the parameters calculated
with Hypercherf and ACD-Lab® as well as the Mc
— — T T Gowans volume. The third descriptor set consists of the
123 4.6 710 111213 14 15 17 18 19 21 23 3D descriptors (randic molecular profiles, geometrical de-
Size of tree (number of leafs) scriptors, RDF-descriptors, 3D-MoRSE descriptors, WHIM
. . . descriptors, GETAWAY descriptors, charge descriptors)
Fig. 2. The tree complexity as a function of the root mean squared error . .
of cross validation (RMSECV).Vertical lines represent the standard devi- and the molecular prope_rtles calculated with Dréﬁoﬂne
ation around the RMSECYV values for the different tree-complexities. The Parameters calculated with Hyperctérand ACD-Lab¥,
horizontal line represent the minimal RMSECV-value +1 standard error.  and the Mc Gowans volume.

0.2
|

0.0
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T(0..0) > 102
MATS e < -0.121 MATS le < -0.2675
2%; 2_,?4 nCrHR > 5.5
(11 @®) i@
5 34 ;5
[0]1] [ 42 < c MlogP < 1.732
17.6 &
(6) Mor19m > 0.449
3.6:30] g s
I 22 GATS4v > 1.0205 X2A > 0.297
“) ' E3s > 0.0665 1
[275305] |e gt 9
E3m<0.15 @
und ® (49
F o = [63; 100]
=] h 4.5
28.2 69.9 . s
(6) (5) h i 86.6 (25)
[17.5:45] [55:925] 5y g 888  (10)  [60; 100]
1-2 = a4 @) [75:9875] 45
[23.75:72.75] [80; 96.25] 4-5

2-3 und

Fig. 4. Model 1 for the dataset of 141 molecules using all descriptors (first descriptor set) Classes (a—l) are identified by the mean of the ahsspfion va
its objects, the number of objects, the absorption range of the class and the class label respectivily.

For the first descriptor set a model with complexity 11 is selected based on the same arguments as for the previous
selected (model Eig. 4). All classes represent less than 50% model. Only two undefined classes are present in the model
of the absorption range, only two undefined classes (classeqclasses d andf) and two outliers (norfloxacin and gabapentin)
defined by less than five molecules), d and i, are present andcould be detected. Labeling of the classes was carried out as
only three outliers (aztreonam, iothalamate sodium and nor- shown inFig. 6.
floxacin) could be detected. Labelling of the different classes = Comparison of the three models shows that the best model
was carried out as shown ig. 4. is obtained with all descriptors, since no class covers more

For the second descriptor set also a model with 11 leavesthan half of the absorption range and the number of unde-
is selected (model Eig. 5. Ten classes cover less than half fined classes and outliers is lowest. In the second model it
the absorption range, class g covers a little more (54%). Still was necessary to come to a compromise between complexity
the model was selected as a compromise between the classiand classification, also the number of undefined classes and
fication and the complexity of the tree. Selection of a more outliers is higher. Even though a less complex model was ob-
complex tree in which class g is split into two smaller classes tained with the third descriptor set, also a compromise had to
results in a high number of undefined classes, resulting in abe found, while the number of undefined classes and outliers
loss of information. Four undefined classes are present in theis comparable with the first model. This is a first indication
model (classes d, f, h, and i) and four outliers (aztreonam, of the fact that the combination of 2D and 3D descriptors in
iothalamate sodium, reproterol and benazepril) could be de-CART can be very valuable (see also Secto?).
tected. Labelling of the classes was carried out as shown in

Fig. 5 4.2. The selected descriptors
The third descriptor set resulted in the selection of a model
with complexity 10 (model 35ig. 6). All classes except class In model 1 Fig. 4) the first split is defined by the topo-

g cover less than 50% of the absorption range. The model wasogical descriptor T ..O), which represents the sum of
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T(0..0) > 102 |
MATS e < -0.121 MATS le < -0.2675
a b
2.05 34.4 nCrHR > 5.5

(11 (8) "
[0; 5] [34 ;50]
1 2

c MlogP < 1.732
17.6 I: ‘
(©) X2A > 0.297
[3.6:30] g .
1 22 EEig01r > GATS6e >
iy H-048 > 0.5 Ss> K
[27.5:30.5] —1H:048>05 ! . 9
und ‘ L I I (49)
. F [63; 100]
e f 7 32 8 g2 28 >
35.2 67.9 y : (24)
(19 O aasonrs27545) 80595 7% 100
[17.5:66] [61;72.75] " 57, "7 Ly und 4-5
1-2 und

Fig. 5. Model 2 for the dataset of 141 molecules using the second descriptor set. Classes (a—l) are identFigd4s in

topological distances between oxygen atd2®]. For the by atomic Sanderson electronegativities), the atom-centered
rest of the tree the importance of the 2D-autocorrelation fragment H-048 (H attached to C2(sp3)/C1(sp2/CO(sp)) and
descriptors can be noted (Moran autocorrelation-lag the constitutional descriptor Ss (sum of Kier-Hall electro-
1/weighted by atomic electronegativities (MATS1e) and topological states).

Geary autocorrelation-lag 4/weighted by atomic van der In the third model Fig. 6), the selected descriptors are
Waals volumes (GATS4v)). Further, the number of tertiary the geometrical descriptors geometrical distance between
C(sp’) (nCrHR) and the average connectivity index chi-2 oxygen atoms (GJ..0)) and gravitational index G1 (G1),
(X2A) [22] are selected. Interesting is the selection of the the surface tension, Id@and the polar surface area (PSA)
n-octanol/water partition coefficient Idgy logPis ameasure  calculated with ACD-Lald8, the GETAWAY-descriptor R6v

for the hydrofobicity of a molecule and is considered as one (R autocorrelation of lag 6/weighted by atomic van der
of the most important properties of molecules for their pas- Waals volumes), the WHIM-descriptor L3s (third component
sage through biomembrangs-8]. From the 3D descriptors  size directional WHIM index/weighted by atomic electro-
the 3D-MoRSE descriptor Morl9m (3D-MoRSE signal topological states) and the 3D-MoRSE descriptor Mor24u
19/weighted by atomic masses) is selected as well as the(3D-MoRSE signal 24/unweighted). More information
WHIM descriptors E3s (third component accessibility direc- about these descriptors can be found in [f22].

tional WHIM index/weighted by atomic electrotopological In the previous section, the classification is found worse
states) and E3m (third component accessibility directional in models 2 and 3 than in the first model. In the first model,
WHIM index/weighted by atomic masses). the first five splits are defined by 2D descriptors. The rough

In the second modelF{g. 5 the first five splits are  classification by these descriptors is then refined by 3D
identical to these in model 1. The selected descriptors aredescriptors. This conclusion is confirmed by the fact that in
T(0..0), MATS1enCrHR, logP, X2A, the Edge Adjacency  the second model the first five splits are identical to model
Index EEig01r (Eigenvalue 01 from edge adjacency ma- 1. Replacement of the 3D descriptors by 2D, in model 2,
trix weighted by resonance integrals), the 2D-autocorrelation results in less significant splits, resulting in more outliers
descriptor GATS6e (Geary autocorrelation-lag 6/weighted and broader classes. Therefore, it seems that 3D descriptors
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G(0..0) > 77.245

ACDTens > 67.2 ACDlogP < -1.7

[
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a G1 <29.0465 ACDPSA > 72.255
2.26 34
(10) (11) ’7
10.31; 5] [%4 60 I I Ele < 0.4545
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18 4 80 9 R6v < 0.2695 i
@) 3) 922
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Fig. 6. Model 3 for the dataset of 141 molecules the third descriptor set. Classes (a—j) are identifieidja4 in

can add significant information to the model. If only 3D HIA-value the molecules were labelled as belonging to one

descriptors are used, as in model 3, also a less good splittingof the five absorption classes defined in previous sections.
of the molecules is obtained. The above indicates that theThe calculated descriptors were then used to assign the
combination of the two types of descriptors gives the best molecules to one of the classes (nodes) in the different CART

description of the used dataset. models. A molecule was considered correctly classified
if the label of the molecule corresponded to the leaf in
4.3. Predictive power which it is classified by the model. The results for model

1 are 24 molecules correctly classified (88.9%) and three
To evaluate the predictive power of the obtained models misclassified (glycine, granisetron, tolmesoxide) (11.1%);
another subset of the Zhao datafi] is used as test set. for model 2: 23 molecules correctly classified (85.2%), three
This test set consists of the HIA-values of 27 molecules molecules misclassified (glycine, tolmesoxide, viloxazine)
(Table 2. It can be noticed that the test set contains only (11.1%) and one molecule classified in an undefined class
substances with a high %HIA value. Better would have (granisetron) (3.7%), and for model 3: 21 molecules cor-
been to be able to create one containing substances forrectly classified (77.8%) and six misclassified (carfecillin,
all classes. However, the selection of this test set can becicaprost, disulfiram, fluvastatin, gallopamil, sultopride)
justified as follows. In practice, HIA values are mainly (22.2%). These results show that the three models have a high
reported for molecules with a high HIA value, because predictive power, with model 1 slightly better than the two
those with a low value are already eliminated during earlier others. Since the used test set consists mainly of molecules
drug molecule screening procedures. Measuring the HIA with high absorption values (class 5), the prediction of this
values is slow, expensive and time-consuming. Therefore, test set is not representative for the prediction over the full
the few molecules with low HIA values in the dataset, were absorption range. The selection of another test set covering
included in the training set. For the molecules of the test the whole absorption range is not possible. This is due to
set the relevant descriptors were calculated. Based on theitthe fact that too few objects with low absorption are present
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Table 2
External test set (extracted fraiti2])

in the dataset. Deleting these objects would result in bad
modeling in the lower part of the absorption range. Therefore,
it was decided to carry out also a manual 10-fold CV. The

is that the misclassification rate was not evaluated by

misclassified molecules. The dataset of 141 molecules was
divided in 10 equal parts of 14 molecules. Each part contains
exclusive molecules with absorption values representative
for the complete dataset. One part is used to evaluated the

parts. This procedure is repeated 10 times, in which each part
is used once as test set. The trees were built according to the
higher specified criteria. This resulted in trees very similar

correctly classified, 38 objects misclassified and 10 objects
misclassified; model 2: 88 objects correctly classified, 39

objects misclassified and 13 objects undefined; model 3: 88
objects correctly classified, 40 objects misclassified and 12
objects undefined. These results show again that the three

In general, it can be concluded that the model built with
all descriptors shows the best results in descriptive as well as

Number Substance %HIA

1 Carfecillin 100 difference with the CV included in the CART methodology

2 Cicaprost 100

3 Clofibrate 96 the RMSECV but by the mean number of correctly and
4 Desipramine 995

5 Diclofenac 100

6 Disulfiram 91

7 Felodipine 100

8 Fenclofenac 100

9 Fluvastatin 95 predictive abilities of the model build with the other nine

10 Gallopamil 100

11 Glycine 100

12 Granisetron 100

13 Ibuprofen 100

14 Ketoprofen 100 to those inFigs. 4—6 The prediction results for all molecules

15 Ketorolac 100 from the 10 trees are as follows: model 1: 92 objects
16 Mexiletine 100

17 Minoxidil 95

20 Naproxen 9775

19 Nicotine 100

20 Nizatidine 99

21 Ondansetron 100

gg EhqulutatnTude igg types of models have a good predictive power with slightly
o4 Sﬁﬂgﬁﬁg € 100 better results for the model using all descriptors.

25 Tolmesoxide 100

26 Valproic acid 100

27 Viloxazine 100 predictive power.

Table 3

The 50 selected molecular descriptors by the variable ranking method. Their abbreviation, name and class

Abbreviation

Name

Class

logP
PSA
HyHydrat. E

Rle
T(O..0)
H-050
SEige
GATS2v
RDF060mM
ACDDens

SEigv

nO

DELS
nCrHR
BAC
GATS2p
IC5
MATS1e
ACDTens

RDF0O65m
HNar
PCR
SEigZ

Ms

AlogP
Mor10m
RDFO020v
H3u

n-Octanol/water partition coefficient
Polar surface area
Hydration energy

R-autocorrelation of lag 1/weighted by atomic Sanderson electronegativities
Sum oftopological distances between oxygen atoms

H attached to heteroatom

Eigenvalue sum from electronegativity weighted distance matrix

Geary autocorrelation-lag 2/weighted by atomic van der Waals volumes
Radial distribution function-6.0/weighted by atomic masses

Density

Eigenvalue sum from van der Waals weighted distance matrix

Number of oxygen atoms

Molecular electrotopological variation

Number of ring tertiary C(sp3)

Balaban centric index

Geary autocorrelation-lag 2/weighted by atomic polarizabilities

Information content index (neighborhood symmetry of 5-order)

Moran autocorrelation-lag 1/weighted by atomic Sanderson electronegativities
Surface tension

Radial distribution function-6.5/weighted by atomic masses

Narumi harmonic topological index

Ratio of multiple path count over path count

Eigenvalue sum frord weighted distance matrix (Barysz matrix)

Mean electrotopological state

Ghose-Crippen octanol-water partition coefficient

3D-MoRSE signal 10/weighted by atomic masses

Radial Distribution Function-2.0/weighted by atomic van der Waals volumes
H autocorrelation of lag 3/unweighted

Molecular properties
Molecular properties
QSAR-properties calculated with
Hypercherf?
GETAWAY descriptors
Topological descriptors
Atom-centered fragments
Eigenvalue based indices
2D-autocorrelations
RDF-descriptors
Macroscopic properties calculated
with ACD-labg®
Eigenvalue based indices
Constitutional descriptors
Topological descriptors
Functional group counts
Topological descriptors
2D-autocorrelations
Information indices
2D-autocorrelations
Macroscopic properties calculated
with ACD-labs®
RDF-descriptors
Topological descriptors
Walk and path counts
Eigenvalue-based descriptors
Constitutional descriptors
Molecular properties
3d-MoRSE descriptors
RDF-descriptors
GETAWAY descriptors
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Table 3 Continued

101

Abbreviation Name Class

RTm R total index/weighted by atomic masses GETAWAY-descriptors
ATS1m Broto-Moreau autocorrelation of a topological structure-lag 1/weighted by atomic masses 2D-autocorrelations
RDF020m Radial distribution function-2.0/weighted by atomic masses RDF descriptors
RDF045m Radial distribution function-4.5/weighted by atomic masses RDF-descriptors
Morl6m 3D-MoRSE signal 16/weighted by atomic masses 3d-MoRSE descriptors
RDF010m Radial distribution function-1.0/weighted by atomic masses RDF descriptors
MorO5m 3D-MoRSE signal 05/weighted by atomic masses 3d-MoRSE descriptors
BLTD48 Verhaar model of Daphnia base-line toxicity from MlogP (mmol/l) Molecular properties

Ss Sum of Kier-Hall electrotopological states Constitutional descriptors
ATS8m Broto-Moreau autocorrelation of a topological structure-lag 8: weighted by atomic masses 2D-autocorrelations
GGI9 Topological charge index of order 9 Topological charge indices
RDF080m Radial distribution function-8.0/weighted by atomic masses RDF descriptors
MAXDN Maximal electrotopological negative variation Topological descriptors
RDF050m Radial distribution function-5.0/weighted by atomic masses RDF descriptors
RDF035m Radial distribution function-3.5/weighted by atomic masses RDF descriptors
RDF075m Radial distribution function-7.5/weighted by atomic masses RDF-descriptors

PwW4 Path/walk 4-Randic shape index Topological descriptors
J3D 3D-Balaban index Geometrical descriptors
MorO3u 3D-MoRSE signal 03/unweighted 3d-MoRSE descriptors
RDF040p Radial distribution function-4.0/weighted by atomic polarizabilities RDF descriptors
Mor01m 3D-MoRSE signal 01/weighted by atomic masses 3d-MoRSE descriptors
ATS7m Broto-Moreau autocorrelation of a topological structure-lag 7: weighted by atomic masses 2D-autocorrelations

T(0..0) > 102 |

MATSle <-0.122

L

MATSle <-0.27

2.05 34.4 nCrHR > 5.5
amn 8) .
[0;5]  [34;50]
1 2 c MlogP < 1.732
17.6
(6) I H3u > 2.9055 ‘
3.6; 60
[ ) ] 3 ] Mor10m < -0.4495 .
@ rl | Morl6m < -0.1255
[27.5:30.5) A ®  Morlém> -0.3575 92.1
und 34.9 . (49)
) f [63; 100]
[17.5:66] 50 ] 4-5
und ) 86.7
[23; 70] g 842 (34)
und 423 738 ~[50; 100]
®) 1 P
[27.5;60]1 [55 :100][77.5; 100] ;
3 und 4-5

Fig. 7. Model for the dataset of 141 molecules using the 50 descriptors selected through variable ranking. Classes (a—j) are idehidiet(desoriptors,
seeTable 3.
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4.4, Variable ranking geometrical properties of a molecule play a major part in
the process of membrane passage. In the models based

Inthis section the possibility of CART as variable selection on all descriptors (model 1 and related models obtained
method was evaluated. Therefore, the previous build modelduring CV) it is observed that the first splits are always
using all descriptors (model 1) was used as starting point. defined by 2D descriptors or molecular properties. The 3D
The variable ranking method was applied to this model. The descriptors usually define the latter splits in the models. This
fifty most important descriptordéable 3 were used to select  indicates that 3D descriptors give a refinement of the model,
a new descriptor set. resulting in better descriptions of datasets and more accurate

In Table 3 the descriptors are ranked in descending order predictions of test sets.
of importance. The two most important descriptors selected  Itis demonstrated that CART can also be used as a variable
by the method are log and the polar surface area (PSA). selection method, resulting in models almost without loss of
The importance of lo@ in absorption processes was already information.
mentioned highef6—8]. The PSA is defined as the part of Generally we can conclude that CART can be a useful
the surface area of the molecule associated with oxygen, ni-tool in QSAR studies. It is capable of selecting the most
trogens, sulfurs and the hydrogens bonded to any of theseimportant descriptors out of hundreds of descriptors and of
atomg?22,26] It is a measure for the H-bonding capacity of a giving a close description of the used datasets.
molecule. It has been found that processes involving passive
diffusion depend primarily on these H-bonding properties
[10]. This shows that CART is capable to select the descrip-
tors, mentioned in the literature to be important in absorption Acknowledgment
processes.
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